An Algorithm for Automatic Road Asphalt Edge Delineation from Mobile Laser Scanner Data Using the Line Clouds Concept
نویسندگان
چکیده
Accurate road asphalt extent delineation is needed for road and street planning, road maintenance, and road safety assessment. In this article, a new approach for automatic roadside delineation is developed based on the line clouds concept. The method relies on line cloud grouping from point cloud laser data. Using geometric criteria, the initial 3D LiDAR point data is structured in lines covering the road surface. These lines are then grouped according to a set of quasi-planar restriction rules. Road asphalt edge limits are extracted from the end points of lines belonging to these groups. Finally a two-stage smoothing procedure is applied to correct for edge occlusions and other anomalies. The method was tested on a 2.1 km stretch of road, and the results were checked using a RTK-GNSS measured dataset as ground truth. Correctness and completeness were 99% and 97%, respectively.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملVectorization, Edge Preserving Smoothing and Dimensioning of Profiles in Laser Scanner Point Clouds
The 3D geometry of an object can be captured very efficiently using a terrestrial laser scanner. By modelling and visualisation of these 3D data, it is possible to obtain vectorized geometric information of the object. Many users prefer to work on profiles, motivated by the handling of paper prints in the field by their own familiarization. Profiles extracted from laser scanner point clouds wil...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملSemi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds
Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions M...
متن کاملScan Line Based Road Marking Extraction from Mobile LiDAR Point Clouds†
Mobile Mapping Technology (MMT) is one of the most important 3D spatial data acquisition technologies. The state-of-the-art mobile mapping systems, equipped with laser scanners and named Mobile LiDAR Scanning (MLS) systems, have been widely used in a variety of areas, especially in road mapping and road inventory. With the commercialization of Advanced Driving Assistance Systems (ADASs) and sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016